Javascript required
Skip to content Skip to sidebar Skip to footer

How to Find Where the Tangent Cuts the Curve Again

half dozen.4 Equation of a tangent to a bend (EMCH8)

temp text

At a given point on a curve, the slope of the curve is equal to the gradient of the tangent to the bend.

7fc48b5455f636efe7e121fa8485c889.png

The derivative (or gradient function) describes the gradient of a curve at whatsoever point on the curve. Similarly, it also describes the gradient of a tangent to a bend at any point on the curve.

To decide the equation of a tangent to a bend:

  1. Find the derivative using the rules of differentiation.
  2. Substitute the \(x\)-coordinate of the given signal into the derivative to calculate the gradient of the tangent.
  3. Substitute the slope of the tangent and the coordinates of the given point into an appropriate form of the straight line equation.
  4. Make \(y\) the subject field of the formula.

The normal to a curve is the line perpendicular to the tangent to the curve at a given indicate.

\[m_{\text{tangent}} \times m_{\text{normal}} = -1\]

Worked example 13: Finding the equation of a tangent to a bend

Find the equation of the tangent to the bend \(y=3{10}^{2}\) at the betoken \(\left(ane;3\right)\). Sketch the curve and the tangent.

Find the derivative

Use the rules of differentiation:

\brainstorm{align*} y &= 3{ten}^{2} \\ & \\ \therefore \frac{dy}{dx} &= iii \left( 2x \right) \\ &= 6x \end{marshal*}

Calculate the gradient of the tangent

To determine the slope of the tangent at the bespeak \(\left(1;3\right)\), we substitute the \(10\)-value into the equation for the derivative.

\begin{align*} \frac{dy}{dx} &= 6x \\ \therefore chiliad &= 6(1) \\ &= 6 \end{align*}

Make up one's mind the equation of the tangent

Substitute the gradient of the tangent and the coordinates of the given bespeak into the gradient-point form of the straight line equation.

\begin{align*} y-{y}_{ane} & = one thousand\left(10-{x}_{1}\correct) \\ y-three & = six\left(x-1\right) \\ y & = 6x-6+3 \\ y & = 6x-3 \finish{marshal*}

Sketch the bend and the tangent

a624b41da05a79e22fc3a20f66bc1515.png

Worked example fourteen: Finding the equation of a tangent to a curve

Given \(one thousand(x)= (x + 2)(2x + 1)^{2}\), decide the equation of the tangent to the bend at \(x = -i\) .

Determine the \(y\)-coordinate of the indicate

\begin{align*} one thousand(ten) &= (x + 2)(2x + 1)^{2} \\ thou(-i) &= (-1 + two)[ii(-one) + 1]^{2} \\ &= (1)(-one)^{ii} \\ & = i \end{align*}

Therefore the tangent to the curve passes through the point \((-ane;1)\).

Expand and simplify the given function

\begin{align*} g(ten) &= (x + 2)(2x + 1)^{ii} \\ &= (ten + ii)(4x^{ii} + 4x + 1) \\ &= 4x^{iii} + 4x^{ii} + x + 8x^{2} + 8x + 2 \\ &= 4x^{3} + 12x^{ii} + 9x + 2 \cease{marshal*}

Find the derivative

\begin{align*} 1000'(x) &= 4(3x^{2}) + 12(2x) + ix + 0 \\ &= 12x^{2} + 24x + ix \end{align*}

Calculate the gradient of the tangent

Substitute \(x = -\text{ane}\) into the equation for \(g'(ten)\):

\brainstorm{align*} thou'(-1) &= 12(-1)^{ii} + 24(-i) + 9 \\ \therefore grand &= 12 - 24 + 9 \\ &= -iii \end{align*}

Determine the equation of the tangent

Substitute the gradient of the tangent and the coordinates of the point into the gradient-point class of the straight line equation.

\begin{align*} y-{y}_{1} & = thou\left(ten-{10}_{1}\right) \\ y-1 & = -iii\left(10-(-1)\right) \\ y & = -3x - 3 + one \\ y & = -3x - two \cease{align*}

Worked case fifteen: Finding the equation of a normal to a curve

  1. Determine the equation of the normal to the bend \(xy = -4\) at \(\left(-1;4\right)\).
  2. Draw a rough sketch.

Discover the derivative

Make \(y\) the subject of the formula and differentiate with respect to \(x\):

\begin{align*} y &= -\frac{4}{x} \\ &= -4x^{-one} \\ & \\ \therefore \frac{dy}{dx} &= -four \left( -1x^{-two} \correct) \\ &= 4x^{-2} \\ &= \frac{four}{10^{2}} \end{align*}

Calculate the slope of the normal at \(\left(-1;4\correct)\)

First determine the gradient of the tangent at the given point:

\begin{marshal*} \frac{dy}{dx} &= \frac{4}{(-1)^{2}} \\ \therefore yard &= 4 \end{align*}

Use the gradient of the tangent to calculate the gradient of the normal:

\begin{align*} m_{\text{tangent}} \times m_{\text{normal}} &= -ane \\ 4 \times m_{\text{normal}} &= -1 \\ \therefore m_{\text{normal}} &= -\frac{1}{iv} \end{align*}

Find the equation of the normal

Substitute the slope of the normal and the coordinates of the given bespeak into the gradient-point form of the straight line equation.

\brainstorm{marshal*} y-{y}_{1} & = yard\left(x-{x}_{1}\right) \\ y-four & = -\frac{1}{4}\left(10-(-1)\right) \\ y & = -\frac{1}{4}ten - \frac{ane}{four} + iv\\ y & = -\frac{1}{4}x + \frac{15}{4} \end{align*}

Draw a rough sketch

20069b2e667f1dad6e7882fd2f900284.png

Equation of a tangent to a curve

Textbook Exercise 6.5

Determine the equation of the tangent to the curve defined by \(F(x)=x^{3}+2x^{2}-7x+1\) at \(ten=2\).

\begin{align*} \text{Gradient of tangent }&= F'(10) \\ F'(x) &=3x^{2} +4x - seven \\ F'(two) &=3(2)^{2} + (4)(two) -7 \\ &=13 \\ \therefore \text{Tangent: } y &=13x +c \end{align*}

where \(c\) is the \(y\)-intercept.

Tangent meets \(F(x)\) at \((2;F(2))\)

\begin{marshal*} F(2) &=(2)^{3} + 2(2)^{ii} - 7(2) +one \\ &= 8 + eight -14 +1 \\ &=3 \\ \text{Tangent: } three &=thirteen(ii) + c \\ \therefore c &= - 23 \\ y & = 13x - 23 \stop{align*}

\(f(ten)=1-3x^{2}\) is equal to \(\text{5}\).

\begin{align*} \text{Slope of tangent } = f'(ten) = -6x \\ \therefore -6x &= 5 \\ \therefore x &= - \frac{5}{half dozen} \\ \text{And } f\left(- \frac{five}{six} \right) &=1-3 \left( - \frac{v}{6} \correct)^{two} \\ &=one-3 \left( \frac{25}{36} \correct) \\ &=1 - \frac{25}{12} \\ &= - \frac{xiii}{12} \\ \therefore & \left( - \frac{v}{6};- \frac{13}{12} \right) \cease{align*}

\(k(10)=\frac{1}{3}x^{two}+2x+1\) is equal to \(\text{0}\).

\begin{align*} \text{Gradient of tangent } = g'(10) = \frac{two}{iii}x+2 \\ \therefore \frac{2}{3}ten+2 &=0 \\ \frac{2}{3}10 &= -2\\ \therefore x&=-two \times \frac{three}{ii} \\ &=-3 \\ \text{And } one thousand(-iii) &= \frac{1}{three}(-3)^{ii}+2(-iii)+1 \\ &= \frac{i}{three}(9)-vi+i \\ &= 3-six+one \\ &= -2 \\ \therefore & (-three;-2) \terminate{align*}

parallel to the line \(y=4x-2\).

\begin{align*} \text{Gradient of tangent }&= f'(10) \\ f(x)&=(2x-1)^{two} \\ &= 4x^{ii}-4x+1 \\ \therefore f'(x)&= 8x-four \\ \text{Tangent is parallel to } y&=4x-ii \\ \therefore one thousand&=4 \\ \therefore f'(x) = 8x-4 &= four \\ 8x &= 8 \\ x & = 1\\ \text{For } 10=i: \quad y & = (two(1)-1)^{2} \\ & = ane \end{align*}

Therefore, the tangent is parallel to the given line at the bespeak \((1;1)\).

perpendicular to the line \(2y+x-4=0\).

\begin{align*} \text{Perpendicular to } 2y + x - 4 &= 0 \\ y&= -\frac{1}{2}x+2\\ \therefore \text{ slope of } \perp \text{ line } & = two \quad (m_1 \times m_2 = -one) \\ \therefore f'(x) &= 8x-4 \\ \therefore 8x-iv &=2\\ 8x&=half dozen\\ 10&=\frac{3}{four} \\ \therefore y&=\left[two\left(\frac{3}{4}\right)-1\right]^{2} \\ &=\frac{1}{4} \\ \therefore \left(\frac{3}{4};\frac{1}{4}\correct) \end{align*}

Therefore, the tangent is perpendicular to the given line at the betoken \(\left(\frac{3}{4};\frac{one}{4}\right)\).

Depict a graph of \(f\), indicating all intercepts and turning points.

Complete the square:

\brainstorm{align*} y&=-[x^{2}-4x+3] \\ &=-[(x-2)^{2}-4+3] \\ &=-(x-2)^{2}+1\\ \text{Turning point}:&(two;1) \cease{align*} \(\text{Intercepts:}\\ y_{\text{int}}: x = 0, y = -3 \\ x_{\text{int}}: y=0, \\ -x^{2} +4x -iii = 0 \\ ten^{ii} - 4x + 3 = 0 \\ (ten-3)(x-1) = 0 \\ x=iii \text{ or } x=1 \\ \text{Shape: "pout" } (a < 0) \\\) 69fcf154dba0672f7723d3c6c3cf39b1.png

Detect the equations of the tangents to \(f\) at:

  1. the \(y\)-intercept of \(f\).
  2. the turning point of \(f\).
  3. the point where \(x = \text{4,25}\).
  1. \begin{align*} y_{\text{int}}: (0;-3) \\ m_{\text{tangent}} = f'(x) &= -2x + 4 \\ f'(0) &=-two(0) + 4 \\ \therefore m &=4\\ \text{Tangent }y&=4x+c\\ \text{Through }(0;-3) \therefore y&=4x-3 \stop{align*}
  2. \brainstorm{align*} \text{Turning point: } (ii;1) \\ m_{\text{tangent}} = f'(2) &= -2(2) + 4 \\ &=0\\ \text{Tangent equation } y &= 1 \end{marshal*}
  3. \begin{align*} \text{If } x &=\text{4,25} \\ f(\text{4,25})&=-\text{4,25}^{2}+4(\text{4,25})-iii \\ &= -\text{four,0625} \\ m_{\text{tangent}} \text{ at } ten&= \text{4,25} \\ grand&=-ii(\text{4,25})+4\\ &=-\text{4,5} \\ \text{Tangent }y&=-\text{4,v}x+c\\ \text{Through }(\text{4,25};-\text{iv,0625}) \\ -\text{4,0625}&=-\text{4,5}(\text{iv,25})+c\\ \therefore c&= \text{fifteen,0625} \\ y&=-\text{4,five}ten+\text{15,0625} \stop{marshal*}

Draw the three tangents above on your graph of \(f\).

5488a7c7dff4a2f10b3febac38fbcf25.png

Write downwards all observations about the 3 tangents to \(f\).

Tangent at \(y_{\text{int}}\) (blue line): gradient is positive, the office is increasing at this betoken.

Tangent at turning point (light-green line): gradient is zippo, tangent is a horizontal line, parallel to \(x\)-axis.

Tangent at \(x=\text{4,25}\) (purple line): slope is negative, the function is decreasing at this point.

braziermorselp.blogspot.com

Source: https://www.siyavula.com/read/maths/grade-12/differential-calculus/06-differential-calculus-04